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1    Introduction 

Hybrid control is the control of continuous plants by sequential automata. This 
usually means frequent changes in the continuous conventional control law applied 
to the plant, changes based on sensor measurements of the trajectory. This typically 
yields plant trajectories without smooth tangents at the discrete times when the 
control law ordered by the control program changes. How and when to make these 
control law changes is the business of the sequential automaton. The question is then 
how should we model this and how can we find control sequential automata to meet 
a prescribed performance specification. 

We propose a game framework for analyzing, extracting and verifying digital 
control programs for continuous plants by regarding such programs as finite state 
winning strategies in associated games. We call such interacting systems of digital 
control programs and continuous plants "hybrid systems" and model them as net- 
works of interacting concurrent digital programs or automata, following [36], [37]. 
This extends to hybrid systems the paradigm introduced by A. Nerode, A. Yakh- 
nis, and V. Yakhnis [38] for analyzing concurrent digital programs meeting program 
specifications as winning finite state strategies in associated two person games. This 
hybrid game formulation is intended to facilitate the transfer of recent tools from 
logic, concurrency, and dynamical systems to extraction and verification of digital 
control programs for continuous systems. Hybrid Games also facilitate infusion into 
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hybrid systems theory of many ideas from the traditional differential game approach 
to control. 

The Basic Model 

We now introduce our basic model for Hybrid Control which is essentially the 
same as the model discussed in [24]. A finite control automaton is an automaton 
with finite input and output alphabets and a finite number of internal states. Its 
input letters are fired by measurements of plant state. Its output letters are control 
signals, that is mode switches, for the plant controller. Our basic model for a simple 
hybrid system consists of the following. 

1. A finite control automaton, which is usually thought of as some sort of logical 
device or program which makes inferences based on current information about 
the plant state to deduce when to change control laws for the plant. See Kohn- 
Nerode [24], [25]. 

2. A continuous plant controller obeying the control law currently supplied by the 
finite control automaton. 

3. A continuous plant being controlled. We include in the plant the physical plant 
controller (actuator), but not the finite control automaton feeding control orders 
(mode switches) to the physical plant controller. 

4. An analog-to-digital or, equivalently, a signal to symbol, converter supplying to 
the finite control automaton as input digitized sensor data sampled from the 
plant. 

5. A digital-to-analog or, equivalently, a symbol to signal converter converting sym- 
bolic control orders output by the control automaton into a control function of 
time regulating the parameters of the physical plant controller. 

These elements are pictured in Figure 1. 
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We summarize the essential features of hybrid systems model of [24]. We think of 
the sequential control automaton as completing "work cycles" in successive intervals 
Atk of time. During the interval Atk, a control law Uk which is imposed by the se- 
quential control automaton at the end of the previous interval is active in controlling 
the system. Also the sequential control automaton is subject during Atk to an input 
Vk to the system. During the first phase of Atk, the sequential control automaton is 
accumulating a sensor data history s about the system through the analog-to-digital 
converter. The sequential control automaton starts interval Atk in a certain initial 
state, uses s to compute a new control law Uk+i and a new automaton state and, 
at the end of Atk, it outputs Uk+i through the digital-to-analog converter to the 
plant controller for use in the next interval Atk+i. Then all processes start over for 
Atk+i- We envisage the input as encoding all the partial information available to 
the control automaton about the state of the plant. A hybrid control run thus will 
be a possibly infinite sequence 

U0,«0,«l,Wl,---- 

We shall see that it is very natural to view such a hybrid control run as play of a 
game between two players, Plant and Control. That is, Control and Plant alternate 
moves in a game in which Control moves by listing full information about control law 



Uk for Plant's use, and then Plant moves by listing the partial information Vk about 
the plant state for Control's use. The range of values of Uk and Vk and the relationship 
between u* and Vk is dependent on the particular application. Then, in the spirit 
of [38], we can view a successful sequential control automaton as implementing a 
winning strategy for Control. That is, in any play in which Control follows the 
winning strategy and Plant plays according to the rules of the game, i.e. follows 
its differential equations, the plant trajectories will meet the desired performance 
specification. 
Performance Specifications 

Our performance specifications are usually open sets of trajectories. Quoting an 
example of Kohn, the Boeing 737 was to be designed so that if a cup of coffee is 
no more than 3/4 full anywhere in the aircraft, it never spills during maneuvers. 
This is not a conventional optimality requirement. It is a "perform sufficiently well" 
criterion which we call an e-performance criterion or, alternately, an e-optimality 
condition. For example, such a criterion might require that we produce a trajectory 
whose costs is within a user defined e of the minimum cost trajectory. 
Outline of Paper 

In sections 2 and 3, we present game models for extraction, analysis, and veri- 
fication of control strategies for simple hybrid systems. All games will be between 
two players, Plant and Control. The objective of any game is for Control to force 
Plant to obey its performance specification. In the game model presented in section 
2, measurements of Plant state are made at discrete times (discrete sensing) and 
changes in the control order to the plant are also made at discrete times (discrete 
mode switching). Such games are an adaptation to hybrid systems of the games of 
A. Nerode, A. Yahknis, and V. Yahkinis [38]. The latter were introduced to extract, 
analyze, and verify digital concurrent programs. 

In Section 3, we introduce "continuous sensing games" to model plants charac- 
terized by continuous dynamics, such as a system of ordinary differential equations, 
with a controller which continuously senses the plant state. We assume that the 
controller is allowed to reset the parameters of the plant dynamics at a sequence of 
discrete times only. Such controllers allow us to model directly analog sensors which 
continuously sense the plant state and which output exact real number control pa- 
rameters to the physical plant controller at discrete times. In most cases, we will 
assume that the values output by the controller are purely digital, one of a finite 
number of control order, to be implemented by a digital to analog converter. Even 
in such cases, such a controller must be regarded as non-digital if the input values 
allowed are exact real numbers, even if there are only a finite number of internal 
states and a finite number of output control orders (mode switches). Our method- 
ology is to start by extracting a continuously sensing, discretely acting, feedback 
control function which meets the performance specification. The discrete sensing 
games of Section 3 can then be thought of as subgames of continuous sensing games 
in which the information sensed between discrete sampling times is ignored. 

Thus continuous sensing games are a second class of games between two players, 
Plant and Control. After each control order is sent by Control to the plant, Plant 
displays a segment of a plant trajectory y which begins when control order is given, 
with initial condition the plant state at that time, and which ends when the next 
control order is issued. We can think of this segment as a contiguous block of Plant 



moves, one at each time in that interval. In this picture the Plant move at a time 
r > t in the interval is just the plant state y(r). In the same picture, a Control 
move occurs at the same instant r and is either no action or a control order. We call 
the latter moves essential Control moves. We assume that essential Control moves 
occur only at a discrete sequence of times. Each such time is the end of a block of 
Plant moves. According to this picture, in a continuous sensing game, Plant plays 
continuously, Control has continuous knowledge of Plant moves, and Control makes 
essential moves only once in a while. 

The motivation for introducing continuous sensing games is that they help us 
extract strategies for a digital controller which will meet performance specifications. 
The idea is that it often easier to find a (non-digital) continuous state strategy 
for Control in a continuous sensing game which forces the plant to meet perfor- 
mance specifications. We then extract a finite state strategy for a finite state digital 
controller doing approximately the same thing by approximating to the continuous 
strategy for the non-digital controller using the Kohn-Nerode method of extracting 
finite control automata from finite open covers. 

In Section 4, we discuss performance specifications and the Kohn-Nerode method 
cover method ([24], appendix 2). It works as follows. Suppose we are given a con- 
troller which meet an open specification. Then the Kohn-Nerode method takes an 
open finite cover of that controller within the open specification and interprets it as: 

1. A finite automaton with a finite input alphabet and a finite state alphabet. 
2. A digital to analog converter. 
3. An analog to digital converter. 
4. A control automaton for the plant. 

When considered as a hybrid system, the plant plus the automaton derived from 
the cover forces the plant to obey the open performance specification. We carry 
out this process for a simple model of a water pump used to maintain a certain 
range of values of the water in a water tank. That is, we shall explicitly construct 
a strategy for Control in a continuous sensing game which models this system and 
then show how we can easily approximate such a strategy to construct a strategy 
for Control in a corresponding discrete sensing game. Finally we shall show how this 
enables us to design a digital control automaton for the hybrid system which meets 
the performance specifications as well as how to construct the Kohn-Nerode small 
topologies for the hybrid system which will verify the controllability-observability of 
the system in the sense of [24]. 

2    Games with Discrete Sensing and Discrete Mode 
Switching 

In this section, we provide a game setting for the specification, extraction, and veri- 
fication of digital control programs for hybrid systems. Extracting a control program 
for a continuous plant which forces the plant to obey a performance specification 
is identified with extracting a winning finite state strategy in an associated game. 
The performance specification itself is identified with a set of acceptable plant state 



trajectories. The games introduced in this section and the next section, each have 
two players, Control and Plant. In our games, we represent the effect on plant state 
of unknown disturbances and uncertain measurements by allowing multiple legal 
moves for Plant. For example, one source of multiple possible moves for Plant is 
that, with a given initial condition, each disturbance over a time interval [t, t + A] 
can yield a different plant state trajectory over that interval and hence a different 
final plant state at the end of the time interval. Another source of multiple Plant 
moves is measurement errors. We assume Control sends perfect information to the 
physical plant controller, namely a suitable control law for the next interval of time. 
However Plant sends imperfect information to the Control program, namely sensory 
measurements of plant state with error. Thus our games are games with perfect 
information on the control law transmitted by Control to Plant, but with imperfect 
information on Plant state transmitted to Control by Plant. 

Our game approach is different from traditional methods of extracting control 
in the presence of disturbances or measurement uncertainties. For example, one tra- 
ditional control engineering approach is to start instead with a deterministic plant 
model which does not incorporate either disturbances or measurement uncertainties, 
to proceed to extract a suitable control program for the deterministic model, and 
afterwards to determine the effect of small changes in measurements and param- 
eters on observability, controllability, and stability of the hybrid system. Another 
approach is to model the Plant by stochastic differential equations in the first place, 
and to look for stochastic control programs with optimal control features. A third 
approach is to use a two person differential game between Control and Plant or be- 
tween Control and Disturbance. This usually entails extracting continuous control 
strategies which change control values continuously, based on continuous measure- 
ments of plant state. To extract such a continuously sensing continuously controlling 
strategy using differential games usually requires elaborate mathematical apparatus 
when it is possible at all. Our games approach differs from all three. Control strate- 
gies are not derived directly from a deterministic model. The model does not involve 
stochastic processes. It is a game approach, but not the usual differential games 
approach. In our games, one player, Plant, is constrained to follow a differential or 
difference equation guided by controls and subject to disturbances. The change is 
that, in our games, measurements of Plant state are communicated to Control only 
at discrete prescribed times, while a change in the control function imposed by Con- 
trol on the Plant can be imposed instantaneously. The changes imposed by Control 
on the plant are event-driven based on the current state of the control automaton 
and the current measurement of plant state. Restricting Control in this way is nat- 
ural if Control is to be a digital program, since a digital program changes its state 
based on a discrete sequence of successive input symbols representing plant measure- 
ments. Even if Control is not restricted to a digital program with finite alphabets 
and states, the discrete sensing, discrete mode switching control strategies turn out 
to be useful as intermediate idealized programs to extract before refining them to 
finite state strategies which give controllable-observable behavior. 

The system model underlying our game is the hybrid systems model of Kohn- 
Nerode, [24] and [25], to which the reader is referred. The games approach stems from 
the Nerode-Yakhnis-Yakhnis [38] formulation of extracting concurrent programs as 
solving an appropriate game. The hybrid systems games were first announced in 



Nerode-Yakhnis [36],[37]. 
Control automata which sense plant state at discrete times but exercise control 

over the plant continuously, with only occasional mode switching, operate in the fol- 
lowing way. Their input alphabets, internal states, and output alphabets can be any 
finite or infinite nonempty set. They can be regarded as non-deterministic automata 
operating in continuous time. They change their input alphabet letter and internal 
state instantaneously at a discrete sequence of time instants only, being in the pre- 
vious automaton state in a non-empty open interval preceding each such moment. 
These are the moments when sense data about the plant are communicated to the 
control automaton. Only at these times does the control automaton instantaneously 
change its output letter, called a control order. This output letter is to be interpreted 
in applications as a control order to the plant physical controller to change the con- 
trol law used in that physical controller. For instance, in Kohn-Nerode extraction 
procedure [26, 15], this issued control order is a chattering control implemented via 
a finite sequence of "primitive" control actions, each specifying a physical controller 
parameter to be used for some period. Such a control order is a finite sequence of 
infinitesimal generators of flows. Each flow is to be followed in the prescribed order 
for a prescribed relative duration of the interval of time over which this control order 
persists. 

In summary, control orders, or mode switches, are issued by the control au- 
tomaton on an event driven basis based on past sense measurements of plant state. 
Although we allow the set of control automaton states to be infinite, in all our ex- 
amples the automaton will be finite state, while the input alphabet representing 
possible sense measurements will be infinite. 

Next we describe the underlying assumptions on the plant model and the control 
automaton for our basic discrete sensing game. 

We assume as a physical realizability requirement that the discrete times at 
which the the control automaton issues control orders, to < *i < *2 < <3 < —-, have 
a positive lower bound for the differences U+i — U. This usually called the Zeno 
requirement. We call these sequences admissible time sequences. In this section, we 
shall assume that for all i, U+i — ij = T is a fixed positive constant T. In a later 
section, this simplification is dropped. 
Plant model 

Our basic assumption of the plant model are the following. 

1. We assume the plant is modeled by an ordinary vector differential equation 

y(t) = f(t,y(t)Mt),d(t)), 

where y(t) is the plant state, u(t) is a control function, and d(t) is disturbance 
function. 

2. The time t will range over the real interval [0, oo). Plant state trajectories y(t), 
control functions of time u(t), and disturbance functions of time d(t) will be 
defined on [0, oo). 

3. The function y = y(t), which we call the plant state trajectory, takes values 
in X, the set of plant states. There will be a class «S of admissible plant state 
trajectories. 



4. The function u = u(t) takes its values in a set U of admissible control values. 
There will a class C of admissible control functions. 

5. The function d = d{t) takes its values in a set D of admissible disturbance values. 
There will be a class V of admissible disturbance functions of time. 

6. The sets of admissible plant states, control values, and disturbance values are 
assumed to be subsets of fixed finite dimensional Euclidean spaces. 

Here is the kind of problem we want to solve. Suppose that a subset V of the 
plant states is specified, which we call the viability set. Suppose that a subset of the 
viability set V is given, which we call the 50a/ set G. We want to extract a control 
strategy which satisfy the following conditions. 

1. Starts the plant at time to in a prescribed plant state j/o in the viability set V. 
2. Ensures that at all subsequent times t, the plant state y = y(t) is also in the 

viability set V. 
3. Ensures, as a winning condition for the game, that the plant state enters the 

goal set G by a designated time. (Alternative winning condition might that the 
plant state eventually enters the goal set G or the plant state must enter G in a 
certain time interval (tfx, tf2).) 

All the control automaton can do at time t is to define the control law for the 
next interval to be incorporated into the control function of time. But the control 
automaton has no influence over the disturbance function of time d = d(t) encoun- 
tered. Thus the control automaton must select the next control law in such a way 
as to keep the plant state in the viability set V and lead to the goal, at a designated 
time or eventually, as required, no matter what admissible disturbance function is 
encountered. 

All the information the control automaton has available to decide what new 
control to impose is its own automaton state plus the current sensor measurements 
of plant state. 

In summary, the problem is to construct a control automaton which, given both 
its current state and measurement of plant state at the end of the current interval, 
changes to a new state and outputs new control law to be used for the next interval 
such that if the plant state starts at time to in the viability set V, with a prescribed 
initial control, the plant state trajectories stay entirely within V and either enters 
the goal set G by a prescribed time or alternately eventually enters the goal set G. 
Admissible Control Functions 

Assume that the set of admissible control functions C is a set of functions which 
contains a set of functions Co from [0,1] to U. If a < b, and c is a control law from Co, 
then the corresponding control law on [a, b] is defined as the function c((t—a)/(b—a)). 
Our minimal assumption on the set of admissible control laws C is the following. 

Suppose that u maps [0,00) into U and there exists a sequence of times 
*o < h < h < h < .... such that for every n, there is a function c in Co for 
which c corresponds to u restricted to [tn,tn+i)- Then u is in C. 

We also assume a similar relation between the set Do of admissible disturbances 
mapping [0,1] to V, and the set of admissible disturbance functions V of time map- 
ping [0,00) to D. We do not specify exactly the closure conditions on C or on V. In 



some contexts, C is the set of all continuous functions, V is the set of all measurable 
functions, etc. 
Uniqueness of Plant State Trajectories 

We assume that each admissible control function and disturbance function gives 
rise to a unique plant state trajectory. That is, suppose the classes C, V and the plant 
function / are given. We shall assume that our plant model satisfies the following 
condition. 

Given an admissible control function u, an admissible disturbance function 
d, an admissible plant state j/o, a time to, there exists a unique admissible 
plant trajectory function y = y(t) with domain [fo.oo) such that y(tQ) = y0 

and for alii > to, V satisfies 

y(t) = f(t,y(t)Mt),d(t)). 

Bounded Measurement Error 
We assume that if y is a plant state and m is its measurement, then there exists 

an e > 0 such that \y - m\ < e. 
We are now in position to define the legal positions of the a discrete sensing 

game. Assume that we are given a fixed admissible time sequence U = to + iAt. 
Game Positions 

Each (legal) position in the game will be a sequences of moves 

m0, Co, mi, ci,..., mn, c„ 

alternating between the players, with Plant moving first. Plant makes even numbered 
moves. Control makes odd numbered moves. Here is the simultaneous inductive def- 
inition of the notion of (legal) positions of the game, and of the trajectory associated 
with a position. 

1. Suppose that p is the opening (null) position. Plant may choose as a move any 
admissible Plant state mo. We call any admissible state x such that \x — mo| < e 
a trajectory associated with that position. That is, we interpret each such a; as a 
possible measurement of true Plant state mo at time to, and also as a degenerate 
trajectory starting and ending at to- 

2. Suppose that p is a position p of odd length. Control may choose as move any 
admissible control law c from C. The trajectories associated with position pc are 
the same as the trajectories associated with p. 

3. Suppose that p = p'c is a non-null position of even length with c its last move 
made at time ij. Inductively, suppose we have already defined the set of all 
plant trajectories associated with p'. Then Plant may choose as move at position 
p any m such, there exists a trajectory associated with p whose end state z 
has \z — m\ < e. Inductively, we define the trajectories associated with the 
position p, m as those trajectories extending at least one trajectory associated 
with p to a trajectory defined also on [ff,tj+i] which solves on that interval the 
same differential equation, using the control function of time on that interval 
associated with c and using some disturbance function of time on that interval 
associated with an admissible disturbance. Thus for any n, if Control makes 



move c at time tn, then the control function of time applied to the Plant in 
[*n,*n+i] is c(t - tn)/(tn+i - in))- If d is in D0, the corresponding disturbance 
function of time on the time interval [t„, *n+i] is d((t — tn)/(tn+i — tn)). Due to 
our trajectory field assumption, on [tn,tn+i], there is a unique plant trajectory 
y = yXyCtd,t„ determined by the plant state x(t„) on the trajectory x(t) associated 
with p, together with the control law c from Co and the disturbance d from Do 
and the differential equation. 

»(*) = /(*,»(*).«(*)»*(*))■ 

For any x (in a Euclidean space) define Ball(x,e) = {y G En : \x - y\ < e}. For 
any subset Y the space, define Ball(Y, e) = \Jx€yBall{x, e) The plant moves m 
can then be described as 

{z e Ball(PlantStates,e) | (3 v € D)(\yx<c,v<u(U+i) -z\< e}. 

We define the set of finite plays of the game to be the set of legal positions 
described above. An infinite play is an infinite sequence, each finite initial segment 
of which is a finite play. Trajectories associated with infinite plays are similarly 
defined. 

There are alternate definitions of "winning the game", depending on what control 
problem has to be modeled. For example, given the basic control problem of trying 
to bring the plant from some initial point x in the viability set V to a point in the 
the goal set, G, the appropriate notion of "winning the game" is as follows. 
Winning a Play 

We say that Control wins play ft, or alternately that n is a winning play for 
Control, if 

1. n is a finite play. 
2. For the last Plant move m of fi, Ball(m, e) is a subset of the goal set G. 
3. All states traversed along all plant trajectories associated with \i are in the 

viability set V. 

We note that there are other natural notions of winning plays depending on the 
control problem to be solved. For example, we might define Control as winning a 
play if all associated plant trajectories stay in an e neighborhood of a fixed curve 
in plant state space. For example if 4>(t) is optimal plant trajectory with respect to 
some Lagrangian L, then we might take the viability set V for this example as the 
set of pairs (a:, t) such that a; is a plant state and t is a time and \x - <j>(t)\ < e. Our 
games can easily be modified to deal with a variety of control problems. 

A strategy for Control is a map F from the set of positions of the game of odd 
length into Co. The idea here is that, given a play mo, CQ , mi, ci,..., m„, the function 
F(mo,co,mi,ci,...,m„) = c« determines the next move of Control. We say that a 
play P = mo,co,mi,ci,...,mn,Cn is generated by the strategy F, or that p is play 
in which Control follows F, if for all i, Ci = F{mo,co,m\,c\,...,rrii). Strategies for 
Plant can be defined in a similar manner. 

The notion of which strategies are winning for Control depends on the definition 
of what it means for Control to win the game. In the remainder of this section a 
strategy F for Control is a winning strategy if, whenever Control follows F, Control 



will eventually reach a winning position, no matter what initial position mo in the 
viability set V is chosen by the Plant to start the game and no matter what the 
subsequent moves of Plant are. 

An automaton strategy for Control is an automaton with the following properties. 

1. The set of automaton states S is any non-empty set. 
2. The automaton input alphabet is Ball(V, e) where V is the viability set. 
3. The automaton output alphabet is Co. 
4. The automaton transition table M(s,m) and its output function H(s,m) are 

such that the output is produced simultaneously with the automaton shifting to 
its new state r € M{s,m). 

We call such an automaton a control automaton. 
We say that a Control automaton strategy generates a play 

fi = m0,co,mi,Ci, ...,m„...,c„. 

1. Co = H(so,mo) and the next control automaton state is si = M(so,mo) where 
so is the initial state of the automaton. 

2. At time tk = <o + kT in a position with last Control move c* and last Plant 
move mjt, the next control automaton state is sjt+i = M(sk,mk) and the next 
control law is Ck+\ = H(sk,mk)- 

We say that an automaton strategy for Control, or equivalently control automa- 
ton, is winning for Control if whenever Control generates plays following the control 
automaton as described above, then Control will reach a winning position, no matter 
what initial move mo in the viability set V is chosen by the Plant to start the game, 
and no matter what the subsequent moves of Plant are. 
Finite Input-Output Alphabet Games 

Real digital controllers are finite state machines with finite input and output 
alphabets. We adapt our definitions for using such controllers as Control strategies. 
First let V be a finite subset of Ball(V, e) such that 

(VyeV)(3y'eV)(\y-y'\<6). 

Then if we we replace V by V in all the definitions above and we assume that the 
set of controls Co is finite, then we have defined a subclass of games which we call 
finite alphabet discrete sampling games. For these games the control automata are 
always finite automata. 

We end this section by giving an explicit example of how a problem that has been 
studied in the literature can be expressed in game language. 

Railroad Problem: This is a variation of a problem considered by Schneider 
and Marzullo [32]. Here the plant is a train whose plant state space consists of pairs 
(y, C) where y is a position on a line and £ is the train velocity at that position. Thus 



the plant space is a subset of a 2- dimensional Euclidean space. The plant dynamics 
are given by 

where u is a control parameter and v is the train engine acceleration. Sensors can 
measure the train position and velocity with known error bounds. We assume that 
there is a common bound e on uncertainty in position and velocity. There is a 
viability set V based on a partition of the track into contiguous blocks. For each 
block, there are regulations requiring that certain minimum and maximum velocity 
bounds be respected when the train is on that block. That is, suppose there are 
n > 1 blocks, and each block is defined by its beginning position and its length 
(bi,ln,i), 0 < i < n — 1. The corresponding velocity bounds are (mini,maxi). Thus 

V = {(y, C) I h < y < hi + Irii =£• C £ [mini, maxi], 0 < i < n - 1}. 

The velocity is assumed to be in a fixed direction along a straight railroad line. 
Hence all positions of the train are in that direction from the initial position 0. 

The goal set is defined by a distance D > 0 from the origin where 

D <    Yl   lni- 
0<»<n-l 

That is, 
G = Ball((D,e) x {0}. 

The problem is to guide the train to stop within the interval [D — e, D + e] while 
satisfying the blocks constraints along the way. 

3    Continuous Sensing, Discrete Mode Switching 

In this section, we define a second class of games which we call continuous sensing 
games. Throughout this section, we keep the same set of assumptions on the plant 
model and continue that same notation as used in section 2. Our basic underlying 
model is a hybrid system in which the plant state is sensed continuously, but new 
control orders (mode switches) are issued at discrete times. We illustrate this idea 
with the following simple example. 
Water Level Monitor 

Our water level monitor is a generalization of an example analyzed in [1]. The 
plant consists of a water pump and a water tank. The controller issues control orders 
to turn on or turn off to the pump. The plant state is the pair consisting of the water 
level y > 0 and the state of the pump pmp G {on,off}, telling whether the pump 
is on or off. The state of the pump determines the dynamics of the water level. We 
assume that the water level y satisfies 

• _ f /i (y) if the pump is on ,_ 
1 h(y) if the pump is off ^ ' 

where /i and ji axe continuous functions such that 



0 < a' < fi(y) < a, for all y and 
0 > -V > f2(y) > -b, for all y. 

Moreover, we shall assume that there are constants L\ and Li such that for all 
x and y, \fi(x) - fi(y)\ < U\x - y\ for i = 1,2. 

Thus the states of the plant can naturally be partitioned into two disjoint classes; 
one class where the pump is on and the other class where the pump is off. The 
controller has two control actions {pon,poff} which cause transitions between the 
two classes of plant states. We assume that the transitions take time up to d > 0, 
the delay, to complete. That is, until a transition has been completed, the pump 
is regarded as being in its preceding state and the corresponding equation for the 
water level dynamics applies. 

Our controller has only two states: {son, soff}. The action of the controller is 
the following. If the controller receives a measurement y of the current water level 
when the controller is in state son, then it checks whether the condition y > g holds 
where g > 0 is a given constant. If the condition holds, then the controller outputs 
a order poff to cause the pump to be turned off and the controller shifts to the 
state soff instantaneously. Otherwise, the controller remains in its state son and 
outputs no order to the pump. If the controller is in the state soff and receives 
a measurement y, then it checks whether the condition y < h holds where h > 0 
is another constant. If the condition y < h holds, then the controller outputs the 
order pan to cause the pump to be turned on and instantaneously shifts to the state 
son. Otherwise, the controller remains in the state soff and outputs no order to 
the pump. 

We note that while the controller instantaneously shifts to a new state, the pump 
does not instantaneously change its corresponding state, so the controller may lose 
the natural correspondence between its state and the state of the pump. Note also 
that the controller is not digital, since it is expected to act at the exact instant when 
the water level satisfies the conditions causing the controller to shift states and the 
water level is measured continuously. 

The controller and the plant interact forever. We wish to find those values of 
(g, h) which will guarantee that the water level is maintained forever between two 
constants 0 < u < v. That is, we want to design our controller to pick (g, h), so that 
at all times t, u < y(t) < v. 

Formally, a plant state is a pair (y(t), z(t)), where y(t) is the water level, z(t) = 1 
if the pump is on at time t, and z(t) = 0 if the pump is off at time t. The control 
parameter takes on only two values, 0 and 1, where 0 indicates that the pump has 
been told to turn off and 1 indicates that the pump has been told to turn off. 
There is no disturbance. The space of control laws is the set of piecewise constant 
functions with values in U = {0,1}. The dynamics of the plant has a form given 
by (1). The conditions on the fc which ensure that the systems always has unique 
fully extendible trajectories for any given initial condition, given at the end of the 
section, are satisfied. 

This ends temporarily our discussion of the the water tank example. We go on 
to the definition of a general class of games which will describe examples like this 
one. 

Next we present two equivalent game models for continuous sensing games. 



Game Model I 
We begin with a plant given by an ordinary differential equation with control 

and disturbance. We consider the set of plant trajectories that begin at a time to 
at a points xo and satisfy the plant dynamics described at the previous section for 
some admissible set of control functions C and some admissible set of disturbance 
functions V. We write TRAJ for the set of all functions Y(t) : [*o,oo) -¥ X such 
that there exists a control function u 6 C and a disturbance function v € V such 
that 

1. Y(t0) = xo £ X and 
2. Y(t) = f(t,Y(t),u(t),d(t)) for all t > t0. 

We are assuming that there is a unique Y € TRAJ corresponding to any choice of 
to, Y(t0), «(*), and d(t). 

Here is the game. There are two players: Plant and Control. Plant moves are 
taken from X but their choice is governed by certain members of TRAJ. Control 
moves are taken from the set (C U {no action}) x [0, oo). Suppose the game starts at 
time t*. The exchange of moves between Plant and Control results in a function of 
time 

tit) = (v(t),z(t)) 

where y(t) € X and z(t) E (C U {no action}) x {t}. A value of such function at 
time tisa pair of the last plant state y(t) observed and the corresponding Control 
move which we regard here as occurring instantaneously. To determine its next move 
z(t), Control may utilize all values of j/(r) at all times r up to and including t. We 
call such a function \i a play, if the following is true. There is a strictly increasing 
sequence of times {tk : k > 0,to = t*} such that for every A; > 0, z(tk) £ C x {£*} 
and for every t € (tk,tk+i), z(t) = (no action,t) and y(t) = !*(<), where >*(.) 
is a member of TRAJ determined by tk,xo = y(tk), the control law in z(tk), and 
some admissible disturbance d(t) e D. That is, if z(tk) = («*(.),ijt), then Yk(t) 
satisfies that Yk(tk) = y{tk) and Yk(t) = f(t,Yk(t),Uk(t), (<)) for all tfe < t for some 
admissible disturbance function d(t). We call the moves of Control at the times tk for 
k > 0 essential Control moves and the moves at the time t $ {tk : k > 0}, i.e. where 
z(t) = (no action, t), inessential Control moves. IS the sequence {**; : fc > 0, to = t*} 
is finite with the last index being n, we put tn+i = oo and the above definition of a 
play applies. 

Definition 1. Call a sequence {tk : k > 0} realizable if 

inf{(t0 - t*), (tk+1 -tk):k>0}>0. 

Call a play of the game, realizable if the sequence of instances of essential Control 
moves in it is realizable. We will consider that the plays which are not realizable are 
lost by Control. 

Game model II 
Next we will describe the plays in our continuous sensing game in a slightly 

different but equivalent way in order to bring out the resemblance with those games 
in which moves alternate in discrete time. Only the essential control moves will be 



displayed in plays. Assume that, at the start of the game the time is t*, the plant state 
is x* 6 X, and the initial control law is u*{t). We define a block to be a contiguous 
segment of a play over a right-open interval of time where the corresponding Control 
moves are inessential except for the leftmost Control move. A block may be infinite 
if there is no essential Control move after it. In presenting a block, we suppress 
the inessential Control moves in it and we specify the moves of Plant by giving 
the element Y € TRAJ that determines its moves in the segment. We remove the 
Control move from the leftmost pair of moves in the block and place it in front of the 
block not regarding it as a part of the block. A play of the game is thus represented 
as a sequence of blocks alternating with a sequence of essential Control moves. Finite 
sequences of this sort are called the positions of the game. A play is a sequence of 
positions such that each next position extends the preceding one. We will describe 
all admissible positions by means of induction on the length of positions. We will 
simultaneously define by induction a segment of the plant trajectory corresponding 
to a position in the game. Thus we will define, by induction on n, the positions pn, 
the plant trajectory segment jn corresponding to the position p„, and the right ends 
t(n) of the domains of 7„. 
(l)n = l. 
Then we let pi = (u*(.), t*). The corresponding segment 71 of the plant trajectory is 
a single point (t*, x*), i.e. 71 (t*) = x*. We denote the right end of the time interval 
of 71 as t(l) = t*. 

Next suppose that the positions pn_i corresponding to n - 1 successive admissi- 
ble moves are defined along with the corresponding plant trajectory 7„_i which is 
defined over the interval [t*,t(n - 1)]. 
(2) n = 2 • k + 2. 

Suppose pn-i = (u*{.),t*) ■ B0 • z0 ■... • Bk- 1 ■ Zk-i- Then the next admissible 
block Bk of Plant moves is specified by any member Y* : [t (n -1), 00) ->• X of TRAJ 
such that Yk(t(n - 1)) = 7„_i(t(n - 1)) and satisfies 

Yk(t) = f(t,Yk(t),uk-i(t),d(t)) for all t > t(n - 1) 

where Uk-i(-) is the control law Uk-i(-) that occurs in the last Control move Zk-i 
and d(.) G V. The plant trajectory corresponding to the pn is the function jn : 
[t*, 00) -> X defined by 

^ /rt _/7»-iW * *G [**.*(»-!)] 
7n[)~\Yk(t)     iftX(n-l). 

(3) n = 2 • k + 3. 
Suppose pn-i = (u*(.),t*) -Bo-zo-... • Bk-i ■ zk-i • Bk. Then a position of length 

n extending pn_i is of the form, p„ = p„_i • Zk where zk is any Control move of form 
(uk(-),tk) such that t* > tk-i and Zk-i = (ufc-i,*t-i)- We then put t(n) = tk and 
7„ equal to 7„_i restricted to the interval [t*,t(n)]. 

An infinite sequence of positions, linearly ordered by extension, defines an infinite 
play. All finite sequences of the form 

(«*(.), t*) -BO-ZQ- ... ■ Bk-i ■ Zk-i ■ Bk 



are plays too. Plays which are not realizable in the sense of definition 5.1 are regarded 
as lost by Control. 

It is easy to see that there is a natural bijection between the plays of Game Model 
I and the plays of Game Model II. 

Remark For convenience of notation, we will suppress the symbols for blocks 
Bk of Plant moves and use instead the plant trajectory 1* which specifies the block. 
We also suppress the first move in the plays described inductively above because we 
regard it as fbdng the game. That is, the initial move simply corresponds to giving 
initial settings of the plant, including initial control parameter values. Thus we will 
denote a play by a sequence of the form 

Yo,zo,Yi,zi, ••■iYk,Zk, .... 

According to our definition, each of the trajectories YJ : [tj_i,oo) -> X is infinite. 
(Here we make the convention that t-i = t*). Of course, in the case when there 
is another essential control move after time *»_i, we only use the finite trajectory 
segment,j/i = Yj restricted to [*»_x,<»], to determine the final plant trajectory. Thus 
an even more compact notation for a play is a sequence of the form 

yo,zo,yi,z\,...,yk,Zk,— 

We note, however, that this last notation could be misleading since it makes it appear 
that the time of the next essential move of Control is part of the previous move of 
Plant. A move of Plant does not force the timing of the next essential Control, this 
is forced by Control's strategy. 

A winning condition for Control is a set of realizable plays whose corresponding 
plant trajectories 7 satisfy the performance specification imposed on the hybrid 
system. For example, in the water level game, the performance specification is that 
for all t, u < y(t) < v. 

We are interested in existence of winning strategies for Control in such a game. 
Intuitively, a strategy is any kind of systematic behavior of Control in a game which 
determines its next move on the basis of the knowledge of the previous moves of the 
players in a play. A winning strategy is a behavior that is 

1. defined for all positions which are reached while using such a behavior and 
2. all plays generated by such a behavior are winning for Control. 

Following Buchi, we consider a description of such a behavior by means of an au- 
tomaton whose input alphabet is the set of the opponent's moves X, and whose 
output alphabet is (C U {no action}) x [0,oo). We do not require at this point that 
either of the alphabets be finite and we do not require that the automaton set of 
states be finite. 

Such an automaton is to be capable of continuously reading its input. At the 
end of this section, we give a formal definition of a continuous input-discrete output 
automaton and describe sufficient conditions for such an automaton to generate 
exclusively realizable plays. 
Modeling Delays We can model a delay in resetting the next control law to 
be imposed on the plant. Such a delay may depend on the current control and on 
the next control law. We assume that the two laws determine an upper bound d 



for the reset time interval. We model this in the game rules for Plant. If Control 
makes a move (u*(.),tk), we view this as an order to reset the current control law to 
Ufc(.). The actually time Tk at which we change to the new control law will be some 
Tk € [tk, ifc + d]. The Plant moves which form the next block will be of the form 

vM_jYk-i(t) for tk<t<Tk 
YkW-\Zk{t)        iOTt>Tk 

where Zk mapping [T*,OO) into the plant states is the unique trajectory determined 
by the initial condition Zk{rk) = Yk-i(Tk), the control law Uk(.), and an admissible 
disturbance function d(.). All the rest is as in the preceding definition of the game, 
except that it is the reset times, rather than the time Control moves, which determine 
the plant trajectory corresponding to a play. The realizability of a play is determined 
by the sequence of reset times, so we must assume that for any k, tk+i — tk exceeds 
the positive lower bound d. 

3.1    Uniqueness and Extendibility of Plant Trajectories 

Next we discuss sufficient conditions for the plant trajectory corresponding to a 
play to be unique and continuous. For an example of such a condition, consider the 
Caratheodory conditions ([12]) to be imposed on the plant model / modified to allow 
control and disturbance parameters. 
Caratheodory Conditions 

We consider plants modeled by the vector ordinary differential equation 

y = f(t,y,u,d) 

where t G [to, oo), x € X, u 6 £/, de D, and which satisfy the following conditions. 

CC 1: For every u and for almost all t, the function f(t, x, u, d) is continuous 
in (x,d). 
CC 2: For every u and every x, the function / is measurable in (t, d). 
CC 3: For every u, there is function m(.) over [to, oo), which is Lebesgue in- 
tegrable over every finite interval of its domain and such that \f(t, x, u,d)\ < 
m(t) in [*0)Oo) for every x and d. 

Theorem 2. Suppose that the admissible control laws are piecewise constant over 
time, that disturbances are measurable functions over time, and that the plant dy- 
namics f satisfy Caratheodory conditions CC 1-CC 3. Suppose also that 

1. The plant state space X coincides with the Euclidian space containing it. 
2. For every u Q.U, there is a function L(.) over \to,oo), which is Lebesgue inte- 

grate over every finite interval of its domain, and such that 
\f(t,x,u,d) — f(t,y,u,d)\< L(t)-\x— y\ for every x, y and d, and 

3. For every u, there is a constant a such that \f(t, x, u, d)\ < a ■ (1 + |x|) for all t, 
x and d. 

Then to every realizable play in the continuous sensing game described above, there 
corresponds a unique absolutely continuous plant trajectory defined over [t*,oo), 
where t* is the time the play begins. 



Proof. We show by induction on k the uniqueness and absolute continuity of the 
plant trajectory 7 corresponding to a segment of a play up to time tk and defined 
over the interval [£*,£*]• It is sufficient to do the inductive step. Assume that the 
statement is true for A;. 

(A) If there is no essential control move after tk, consider 

»(*) = f(t,y(t),uk,d(t)) 

for t > tk- Here d(.) is a measurable disturbance that occurs in the plant for t > tk, 
Uk is the value of the constant control function which is part of the essential Control 
move at tk. We have to show existence, uniqueness of an absolute continuous function 
satisfying the differential equation for t > tk and beginning from the point 7(4). 
This would yield an absolutely continuous extension of the plant trajectory realizing 
the trajectory corresponding to a play. By assumption (1), we may assume that 
j(tk) G X. We have to check only that F(t, y) = f(t, y, Uk, d(t)) satisfies the standard 
Caratheodory conditions, a uniqueness of a solution condition, and an extendibility 
condition. The standard Caratheodory conditions CC 1-CC 3 are obtained from CC 
1- CC 3 by omitting control and disturbance parameters. We will check them for 
F. 

Original Caratheodory condition CC 1: According to CC 1, there is a set E of the 
measure 0 of times such that for any t not in E, f(t, y, u*, d) is continuous in (y, d). 
Fix such a t. Then f(t,y,Uk,d(t)) is continuous in y. That is, F(t,y) is continuous 
in y for all t not in E. This verifies the original condition CC 1. 

Original CC 2: We need only show that for every y, F(t, y) is measurable in t. By 
CC 2, f(t,y,Uk,d) is measurable in (t, d) for every y. Since d{.) is measurable and 
the composition of measurable functions is measurable, it follows that f(t, y, Uk,d(t)) 
is measurable in t for every y. This is the desired conclusion for F. 

Original CC 3: The adapted CC 3 gives the function m(.) for / depending on 
u. So we take the m corresponding to Uk and it provides the desired bound for F. 

From the standard Caratheodory conditions for F, it follows that there exist 
solutions of the equation y(t) — F(t, y(t)) for every t** > t*, x** € X in some 
interval [t**,t** +p] where p > 0 and y(t**) = a;**, see [12], page 4. 

The uniqueness of F easily follows from assumption (2). That is, choose the 
function L(.) according to (2) which corresponds to Ufc. Then 

\F(t,x) - F(t,y)\ = \f(t,x,uk,d(t)) - f(t,y,uk,d(t))\ < L(t) • \x-y\. 

It then follows that there is a unique trajectory of F passing through every point 
(t**,x**), see [12], page 5. 

Finally we consider the extension of solutions of y = F(t,y). Since the standard 
Caratheodory conditions are satisfied by F, according to [12], page 7, every solu- 
tion can be extended on both sides of an initial condition to the boundary of any 
closed and bounded domain of F. By condition (3), choose o to correspond Uk- Then 
\F(t, y)\ < a • (1 4- \y\). From estimates based on this condition, it follows that the 
states of any trajectory over a finite closed interval of time lie in a finite ball B whose 
radius depends only on size of the interval. Using (1), we may choose for any t > t*, 
the domain for F to be [t*,t] x B. This is a closed and bounded domain. From the 
quoted theorem, it follows that a solution can be extended on the whole of \t*,i\. 



This completes the demonstration of existence of the unique absolutely continu- 
ous plant trajectory satisfying y(t) = f(t,y(t),Uk,d(t)) for all t > £*. 

(B) There is an essential Control move at tk+x > £*• For a construction of a 
plant trajectory up to tk+i corresponding to a play, we have to show that there is 
the unique absolutely continuous plant trajectory satisfying y(t) = f(t,y(t),Uk,d(t)) 
for all t £ [£fc,tjt+i]. In this case, the proof is similar to the proof used for case (A). 
□ 

We note that the conclusions of the theorem hold, in particular, for / independent 
of time and if for all control values u, / is continuous in (x, d) and satisfies conditions 
(l)-(3) of the theorem. 

3.2    Continuous Input-Discrete Output Automata. 

Next we want to consider the analogues of an automaton winning strategy for contin- 
uous sensing games. For this purpose, we introduce continuous input-discrete output 
automata to represent strategies for Control in continuous sensing games. 

We adopt the following definition of the behavior of an ordinary automaton in 
continuous time. First we define the notion of an automaton run on an input word 
as a function of continuous time. Recall the ordinary definition of a run for a finite 
state automaton. Let x = XQXX... xn be an input word. Then a run r = r(0), r(l),... 
is the sequence of the automaton states satisfying 

r(0) = Sin and 
r(k + 1) = M(r(k),xk) for all k > 0 

where Sj„ is the automaton initial state and M is its transition table. 

Definition3. Suppose 0 < to < *i < ... < tn is an increasing sequence of times at 
which the letters of an input word x = xo^i—^n are read. A function r : [0, oo) -¥ S 
is a run of the automaton in continuous time if 

{; 
ift6[0,*o] 

r(t) = { M(r(tk),xk) iin>k>0Ate (tk,tk+i] 
M(r(tn),xn) if t€ (tn,oo) 

Definition 3 says that system trajectories, viewed in the automaton state space, 
are functions of time that are piecewise constant, continuous from the left at all 
times. 
Continuously Reading Automata 

We now introduce a definition of the input-output automata used to model con- 
trollers capable of continuously reading input that may continuously change. We 
adopt the view that transitions are instantaneous and that state transitions are con- 
tinuous from the left for automaton runs which correspond to a continuous stream 
of input in time. We also restrict attention to the output of the automaton at a 
discrete sequence of times. 

Definition 4. A continuous-input discrete-output automaton consists of 
1. A nonempty set of states S, 
2. A nonempty input alphabet /, 



3. An output alphabet J U {no action} where J D {no action} = 0, 
4. A transition table M : S x J -> S, 
5. An output function H : S x I -t J\J {no action}, 
6. An initial state Sj„. 

For example, the controller described previously for water level translates into 
the following continuous input-discrete output automaton. Its set of states is S = 
{son, soff}, the initial state is Sj„ = son, the input alphabet is I = {y :y >0,y £ 
R}, and the alphabet of essential outputs is J = {pon,poff}. Here R is the set of 
reals. The transition table and the output function are defined as follows: 

,r, N      f soff if y > g 
M(son,y) = < .,    ~ v     ,a'     [son   iiy<g 

,,,    ,,   x      [son   if y<h 
M^Soff^ = [soff if y>h 

H(son,y) = \SOff        *y ^ v '      [no action if y < g 

H(    ff) = [son if y - h 
\soJJ> V)     | no action if y > ft 

Definitions. Let TIME = [t*,oo), r(0) = sin. Suppose that x(.) maps TIME 
into /. A run of a continuous-input discrete-output automaton corresponding to the 
input stream x(.) is a function r : TIME -¥ S such that for every t £ TIME, 
there is a duration r > 0 such that r(t') = M(s,x(t)) for every t' 6 (t,t + r]. The 
output function of a continuous-input discrete-output automaton corresponding to 
the input stream x(.) and a run r is the function h : TIME -t J U {no action} 
defined by h(t) = H{r(t),x(t)). 

Given a run r of a continuous-input discrete-output automaton A corresponding 
to an input stream x(.), we define the set of switching times of r, SW(r), to be the 
set of all t e TIME, such that M(r(t), x(t)) ^ r(t). 

The difference between our continuous input-discrete output automaton and a 
standard Mealy machine is that we allow the input to be an arbitrary function of 
continuous time rather than a piecewise constant function of time which reflects input 
at discrete instants only. We call the subset J of the automaton output alphabet, 
the alphabet of essential outputs. 

The definition of run for a continuous-input discrete-output automaton gives 
rise to piecewise constant and continuous from the left state space functions which 
represent the transitions. One of the reasons we adopt this definition is to avoid 
the difficulties associated with the following automaton. Let 5 = {0,1}, s,n = 0, 
I = [5,10], to = 1, and the automaton transition function be given by 

M(0,5) = l 
M(l,a;) = 0for x> 5. 



Suppose the input function is x(t) = 5 • i. Then a transition should occur at 
t = to- However if such a transition does occur, then at any later instant ti > to 
where the new state is s = 1 another transition from the state s = 1 back to the 
state s = 0 must occur. So at some ti > t\, the automaton is again in state s = 0. 
This would imply that such transition times occur arbitrarily close to to- But this is 
inconsistent with our intuition of an automaton transition while continuously reading 
the input because there is no finite interval of the form (to, to + T] during which the 
automaton is in a fixed state. 

Definition 6. Assume that the automaton input alphabet J is a subset of a Eu- 
clidean space. Call the sets Gs = {i ■ M(s,i) ^ s} the switching sets. We say that 
a continuous input-discrete output automaton A has separated switching sets if 
for every s, and s', the Euclidean distance between the sets Ga and Ga> is positive, 
i.e. p{Ga,Ga<) > 0. Here p(Ga,GS') = inf{p(x,x'): x G Gs, x' G Ga>} where p(x,x') 
is the usual Euclidean distance function. 

Theorem 7. Consider a continuous input automaton with the following properties. 

(a) Its set of states is finite. 
(b) Its input alphabet is a subset of a Euclidean space E. 
(c) Its switching sets of inputs are separated. 
(d) Its switching sets of inputs are closed in the subset topology of E. 

Then for every input function x{.) which is continuous over TIME = [t*, oo), there 
is a unique run of the automaton over x(.). Moreover, the set SW(r) of switching 
times during the run is discrete with no limit points in TIME. 

Proof. Clearly, if G,in does not intersect the range of x(.), then r(t) = Sj„ for all 
t G TIME. In this case, SW is empty and clearly the conclusions of the theorem are 
satisfied. Suppose GSin does intersect the range of x(.) . Then x~1(GSin) ^ 0. This 
set is also closed, since by assumption a;(.) is continuous and Gain is closed. Hence, 
there is the least time to such that to G x~1(GSin). This is the first switching time. 
We include to in SW. We associate the state so = Si„ with to. 

Next suppose we have constructed an increasing sequence of switching times 
io,...,tfc and the sequence of the corresponding states up to so,...,Sk at these 
switching times. Consider Sk+i = M(s*,x(tfc)). Then either x~1(Gak+l) ("I (t*, oo) = 
0, in which case r(t) = Sk+i for alii > tjb,ori~1(GgJt+1)n(t*;,oo) ^ 0. If i-1(G,fc+1)n 
(tfc,oo) 7^ 0, then the set x~1(GSh+1) fl [tfc,oo) is closed. Moreover tj, cannot be a 
limit point of x_1(Gr

g|,+1)n[t/fe,oo). That is, if t* were such a limit point, there would 
be a sequence of points fj in x~1(Gah+1) converging to i*. But then, because of the 
continuity of x(.), it must be that x(tk) is a limit point of a sequence x(t'j) of points 
from GSh+1. This would contradict the separateness of Gah+1 from the switching set 
Glh containing x(tk). Then we let tk+i be the least element of x~1(Gait+1) f) [tk, oo). 

Thus by induction, we can define two sequences {tk} and {sk} such that for all 
k, 

tk+i ei 1(G,»+1)n(tfc><x>) 



and 

sjfc+i = M(sk,x(tk)). 

Let SW be the set of elements in the first sequence. We claim that SW has no finite 
limit points in TIME. Indeed suppose the sequence t* converges to t** > 0. Since 
the set of states S is finite, there is a strictly positive number a = min{p{Gs,Ga>) ■ 
s ^ s',s,s' € S}. Choose e < a/2. By continuity of x, there exists an S > 0 such 
that \t —1**\ < 6 implies \x(t) — x(t**)\ < e. Consider fco such that for every A; > ko, 
|**+i -tk\ < 6. Then for all such k 

\x(tk+i)-x(tk)\<2-e = a 

However for all k, x(tk) € GSh and by the separateness of the switching sets, it 
follows that 

\x(tk+i) - x(tk)\ >a. 

This is a contradiction and hence the set SW(r) has no finite limit points. 
Since no transitions are possible at times between switching times, we have, 

besides the constant run mentioned above, two more types of runs depending on 
whether the set of switching times SW is finite or infinite. If SW is finite with last 
switching time t„, then set 

{«in if t = to 
M{r(tk),x(tk)) Hn>k>0At€ (h,tk+1] 
M(r(tn),x(tn)) iff €(t*,oo). 

If SW is infinite, then set 

r(t\-f
sin ift = t0 

rw -\M(r(tk),x(tk)) if k > 0 At € (i*,i*+i] 

The uniqueness of runs follows by induction on the switching times. 
D 

Next, we single out a property of a continuous-input discrete-output automaton 
which has been proved in the previous proposition, but can be established with a 
slightly weaker assumption. We will use this fact later in this section. 

Propositions. Suppose that the premises of Theorem 7 hold, but the requirement 
that the set of the automaton states be finite is omitted. Then at any state at which 
the automaton is continuously reading a continuous function x : TIME -► /, either 
the automaton remains in this state forever or there is a finite time t > 0 at which 
a transition to a different automaton state takes place. 

Definition 9. A run r of a continuous-input discrete-output automaton is realiz- 
able if 

(a) Both transitions to new states and essential outputs, occur only at discrete 
times DT = {t0 <tu< ...}. That is, M(r(t),x(t)) = r(t) and H(r(t),x{t)) = 
no action for t not in DT and r(tk) ^ r(tk+i) and H(r(tk), x(tk)) E J for k > 0. 



(b) r(t) = M(r(tk),x(tk)) for every k > 0, t € (tk,tk+1}. 
(c) inf({{tk+1-tk):k>0})>0. 

If the sequence DT is finite and n is the last index k occurring in it, define tn+i = oo. 
Then (a)-(c) of the definition apply to the interval (tn,tn+i)- 

For example, the continuous input-discrete output automaton representing the 
controller for the water pump given above satisfies the premises of the Proposition 
7. Therefore it has runs over continuous water level trajectories y(.). Moreover, the 
proposition tells us that these runs axe realizable. 

Conditions (a) and (b) given in the definition of a realizable run reflect our 
intuition of automaton transitions as described above. The definition synchronizes 
transitions to new states with essential outputs. For automata with separated switch- 
ing sets which satisfy the other conditions of Theorem 7, once this synchronization 
is present, every run is automatically realizable. 

Condition (c) prevents the set of transition times DT from having finite limit 
points. We call (c) a realizability condition. The definition of realizable run here has 
the same motivation as that of realizable time sequence in [24] and of "bounded 
from below" sampling intervals for a controller in [36]. 

By taking I = X x [0, oo), we can make the automaton transition table and the 
output function depend explicitly on time, M(s, x, t); H{s, x, t). We can then ensure 
that the conditions (a)-(c) are satisfied for all runs of the automaton over any input 
function x(.) by choosing a discrete set DT = {to <h < ...} satisfying (c), defining 
M(s,x,t) = A(s,x) and H(s,x,t) = B(s,x) for t € DT, and defining M(s,x,t) = s 
and H(s, x, t) = no action for t £ DT, where A and B are transition tables which 
are not dependent on time. 

3.3    Automata as Strategies 

Next we explain how we can use a continuous-input discrete-output automaton as a 
strategy for Control in our continuous sensing games. First choose an input alphabet 
I = X and an alphabet of essential outputs J = C x [0, oo). Control uses the 
continuous-input discrete-output automaton in the following way. Suppose t is the 
current time and tk < t is the last time the automaton output was an essential 
Control move. If y(t) is the current input, the automaton stays in its current state 
s or shifts into another state according to its transition function M(s,y(t)) and 
outputs the respective Control move according to its output function H(s,y(t)). If 
at time t, there is a shift to another state, then the next essential Control move 
occurs at t and tk+i = t. However the sequence of automaton states resulting may 
not form a run, much less a realizable run, in the course of reading an input. We 
call the automaton a realizable strategy for Control if whenever Control uses the 
automaton as its strategy, then the resulting play produces a realizable run. 

Since the set of plant states is usually a subset of a Euclidean space, it is natural to 
consider automata with closed and separated switching sets as strategies for Control. 
However even if Control use this type of automaton, it will not always produce plays 
whose realizability can not be established by appealing to Theorem 7. The reason is 
that the automaton output affects the future input and may result in the automaton 



input not being a continuous function of time, so that Theorem 7 does not apply. 
Such an automaton is given below. 
Control strategies need not produce realizable runs 

Consider the plant with a scalar control and disturbance: 

y = d, for u = 0 
y = — d, for u = 1 
d G Z, d>0 
y(0) = 0, and initially the control parameter is set to 0. 

Consider the following automaton represented strategy for the player Control: 

S = {0,1} 
Sin =0 
I = {y:y£R} 
J = {u ;= 0, u := 1}. (Here we think of the essential control moves as orders 
to set the control parameter to the indicated values.) 

Let a > ß > 0 be given and let the transition table be defined by: 

Here we assume The output function is defined by 

H(0,y) = {U:=l      *yla v     '      [ no action if y < a 

H^ = {lo 
= 0      if y > fi 
action if y < ß 

It is easy to see that there are exactly two switching sets, namely, Go = (a, oo) 
and Gi = (—oo,/3). Thus since ß < a, these are separated switching sets. If this 
strategy always produced realizable runs, then the corresponding plant trajectories 
would be continuous. But we exhibit a plant trajectory from a game which uses 
the automaton as a Control strategy and which produces a discontinuous plant 
trajectory. Assume that the disturbance is initially d = 1 at time t = 0, and that 
the disturbance doubles after each automaton state switch. We will get the first 
switch at time a, the second will occur (a — ß)/2 seconds later, the third will occur 
(a — /3)/22 after the second, and so on. The switch times tk are the sums of the first 
k terms of this series. That is, they are tk = J2i=o 9L^'- tms sequence has a finite 
limit point 2a. Hence there are times arbitrary close to 2a from the left where the 
plant state is y = a and the plant state y = ß. Thus the plant trajectory is not 
continuous at t = 2a. 
Plants with Realizable Control Strategies 

Next we define a class of plants together with a class of input-output automata 
which are guaranteed to produce realizable strategies for Control. 



Suppose the plant is modeled by a system of differential equations of the form 

x = f(x,u,d),u €U,d€ D,x e X, 

where u is a control parameter and d is disturbance parameter. Assume that U C 
Em, D C Ek, and that X C En. We allow an additional source of nondeterminism in 
the plant of the following sort. For each pair of parameters (u, u'), there is a delay in 
resetting u to u', bounded by distance p(u, u'). Let t* and x* be the initial conditions 
for the plant. Assume that we have only piecewise constant control functions, so that 
we can identify control parameter value u with the constant control function u(t) = u 
for all t > t', where t' is a resetting time of a previous control parameter value to u. 

Consider the following strategy A for Control in the continuous sensing game 
in which the plant state x is being sensed by Control. Let A be a continuous-input 
discrete-output automaton such that: 

1. Its state space S is finite. 
2. Its input alphabet is I = X. 
3. Its alphabet of essential control moves is J = U x [0, oo). 
4. Its transition table M satisfies the condition of separateness of switching sets. 
5. The switching set for the initial state contains the initial plant state x* € GSi„ ■ 
6. The automaton output function H(s, x) produces an essential output only when 

x is in the switching set Ga, otherwise H(s,x) = no action. 

In particular, H(sin,x*) = (u, £*) for some u € U so that the first output to be 
produced by the automaton is an essential move. 

Theorem 10. Suppose that the plant is modeled by 

y = f(t,y,u,d) 

as described above. Suppose that f satisfies the Caratheodory conditions CC 1, CC 
2, and CC 3, where we assume that there is a fixed function m(.) for f, inde- 
pendent of the value u of the control parameter for condition CC3. Assume that 
the automaton A described above has closed separated switching sets. Then for every 
play fj, consistent with Control following the strategy A, the resulting automaton state 
function is a realizable run of A. 

Proof. We show first that the use of A by the player Control results in the 
production of runs of A. By the conditions in the paragraph preceding the theorem, 
the first control move according to A is essential. The control laws here are constant 
functions. Suppose there are no more essential control moves. Since the control laws 
here are constant functions, an essential move creates continuous plant trajectories 
because of the three Caratheodory conditions satisfied by the plant model. It then 
follows by Theorem 10 that the corresponding run is realizable. 

Now suppose a finite number of essential control moves were made from the 
beginning of the play. Consider a time t** at which the last essential control move 
was made. That is, if s* is the state of A at time <**, then the automaton input x** 
at time t** is in the switching set G,*. We may assume that the interaction of the 
automaton A and the plant has produced the plant trajectory 7 up to time t** and 



j(t**) = x**. In other words j(t**) 6 G8*. We wish to show that there is a positive 
T > 0 such that there is no essential automaton outputs and transitions to new 
states in the interval (t**,t** + r). It is easy to see that, even with the finite delay 
corresponding to resetting the control according to (u,t**) = H(s*,x**), the input 
to the automaton is a continuous plant trajectory because the function / satisfies 
the Caratheodory conditions CC 1, CC 2, and CC 3. It follows from Proposition 
4.3 that there are two alternatives. The first alternative is that the automaton stays 
forever in this state. This produces a valid realizable run and play with t** being 
the last essential Control move. The second alternative is that there is r > 0 such 
that the next essential move occurs at t** + r. this means that there are no essential 
outputs or transitions to new states in (t**,t** + r), since these occur at the same 
time according to the definition of A, and the transitions to new states do not occur 
in this alternative for such an interval. 

It follows that when Control uses A in the game, the set of times at which 
essential moves are made is a discrete set. We let DT(fj) denote this set for the play 
fi. Next fix a play /J, and consider an initial sequence {tk ■ k > 0} of DT = DT(fj) 
that begins with the time of the first essential control move. Clearly, every finite 
initial segment of this sequence determines a position in the game for which there 
is a corresponding continuous plant trajectory. Suppose that q is a limit point of 
this sequence. Due to assumption CC 3, we get the following estimate for any plant 
trajectory 7: 

\l{t')-l{t)\<ft   m{t)dt. 

Since the integral is absolutely continuous, it follows that the 

limk-^oo\l{h+i) - l{h)\ = 0. 

By the argument above, it follows that for every k, 7(4) € Gtk, where s* is the 
automaton state at which the transition occurs at the switch time tk. Moreover, the 
sets GSk+1 and G8k are distinct since the states sjt+i and s* are distinct. The fact 
that the above limit is 0 and the fact that there are only a finite number of switching 
sets would imply that for some pair of states s and s', the distance between Ga and 
Gsi is 0. But this contradicts our assumption that there is nonzero distance between 
the switching sets. Thus the sequence {tk} has no finite limit points. Since the set 
of switching instants DT is the set of times of essential Control moves and this set 
has no finite limit points, the corresponding play is realizable. O 

We note that for the water level monitor problem describe above, the bound 
function for the Caratheodory condition CC 3* is m(t) = max{a, b} ■ t. Thus the 
plays produced by the suggested automaton controller are all realizable. 

4    From Continuous to Discrete Sensing Games 

In this section we fully analyze the water pump example. We start by explicitly 
constructing a continuous-input discrete-output automaton A(g, h) for a pair of pa- 
rameters g > h as described in the previous section. By Theorem 10, we know that 
if Control uses A(g, h) for its strategy in the continuous sensing game for the water 



level monitor, then it will always produce realizable runs for A(g,h). We shall show 
that for any desired water levels, u < v, we can pick (g, h) in such a way that if 
Control uses the automata A(g, h) for its strategy in the continuous sensing game, 
then Control will win in the sense that we will guarantee that at all times t, the 
water level y(t) will satisfy u < y(t) < v assuming that u < j/(0) < v. Then we 
shall show how we can use the continuous-input discrete-output automaton A(g, h) 
to design a finite automaton which will control the plant, that is, the water tank 
plus pump, to meet the desired performance specification. Finally, we shall show 
that we can explicitly extract Kohn-Nerode small topologies which will verify the 
controllability and observability of our discrete control strategy. 
The (g,h)-Automaton A(g, h) 

With any pair (g, h) of positive numbers with g > h we associate a (g, h)- 
automaton A(g,h) with continuous input alphabet and a three letter output al- 
phabet. (This is essentially the same automaton that was described in the previous 
section.) 

1. The input alphabet consists of the numbers in interval M of possible water levels 
y- 

2. The two automaton states are son, soff. 
3. The three letter output alphabet is pon,poff,no action. 

The transition table and output function of this automaton are defined as follows. 

an \      f so// if« > a M(son,y) = { .t    Z v      "'      [son   iiy<g 

,,,    ,,   x      (son   ify< M(soff,y) = {soff.iy> 

H(son,y) = i soff        if y>g 
no action if y < g 

f.y) = {; 
rrf    rf   \     ) son if y < h 
H(s°ff>y) = {noacti(mify>h 

The the switching sets for A(g,h) are Gson = [g, oo) and Gg0// = (—oo,/i]. 
We can thus guarantee that A(g, h) has separated switching sets if we impose the 
requirement that g > h. 

Theorem 11. If parameters g and h in the continuous sensing game for the water 
level monitor with maximum delay d satisfy the conditions: 

(l)g>h, (2) g + a-d<v,(3) h-b-d>u, 
(4)h-b-d<y(0)<g,(5)^>d,       (6) ^ > d, {Z) 

then the strategy A(g, h) is a winning strategy for the player Control in any game 
where the initial state of Control is son and the initial state of the pump is pan. 



Proof Suppose (I = YQ, ZQ, Y\, Z\, ... is a play consistent with A. We have to show 
two things. First we must show that the strategy induced by A(g, h) is applicable at 
every position of Control in this play. That is, we must show that if Control using 
this strategy, then he never gets stuck in the sense that he is unable to make a move 
according to the strategy. This is the perpetual property [48], [38]. Second we must 
show that A(g, h) induces a winning strategy for Control, i.e. that the water level 
trajectory j/(.) corresponding to any play consistent with the game initial condition 
and the strategy A(g, h) has the property that for all times t > 0, u < y(t) < v. We 
show both properties by induction on the length of a position in the play. 

The initial position of the play is p = (pan, 0) and the initial trajectory of the 
plant is just (0, y(0)). That is, the initial control sent to the plant is that the pump 
should be on. Now since j/(0) satisfies v < h — b ■ d < y(0) < g < v, we see that the 
initial trajectory is within acceptable bounds. 

Consider the first block of plant moves which is specified by its corresponding 
trajectory YQ. By our assumptions, we have that for all t, 

0 < a' < Y0(t) < a. 

Thus Yo will be a strictly increasing function so that there will be some time *i > 0 
such that Yo(ti) = g. It is easy to see that h < (g — y(0))/a' 

Thus at time <i, Control issues the order that the pump should be turned off 
and switches to state soff. Thus ZQ = (poff,ti). 

Now consider the next block of plant moves which is specified by its corresponding 
trajectory Y\. Because of the delay in switching from the pump being on to the pump 
being off after the control order to turn the pump off has been issued, there is some 
0 < T\ < d such that the pump remains on between time <i and time *i + T\ and 
then the pump turns off. Thus the corresponding trajectory Y\ satisfies 

0 < o! < Yi(t) < a       if *i < t < h + TI 

0 > -V > Yi(t) >-b iit>h+Ti 

It is then easy to see that the trajectory Y\ must reach its maximum at time 
t = 11 + Ti and that this maximum value is bounded by g + CLT\ < g + ad < V. 

After time t\ + T\ , Y\ is strictly decreasing so that there must be some time <2 > h 
such that Yi(i2) = h. It is easy to see that d < ^ < t2 - h < g+°f ~h. Since 
h - h > d it follows that the state the pump will be soff at time t^. Thus at 
time £2, Control issues a order that the pump be turned on and switches to state 
son. Thus z\ = (pan, £2). It then easily follows that the values of the trajectory Y\ 
between times t = t\ and t = t2 takes on its maximum value at time t\ + T\ and its 
minimum value at time t2 where Yi{t2) = h. Thus the values of Y\{t) lie between h 
and g + ad and hence meets our performance specifications. 

Now consider the next block of plant moves which is specified by its corresponding 
trajectory Y2. Again, because of the delay in switching from the pump being off to 
the pump being on after the control order to turn the pump on has been issued, 
there is some 0 < r2 < d such that the pump remains off between time t2 and time 
t2 + T2 and then the pump turns on. Thus the corresponding trajectory Y2 satisfies 

0 > -b' > Y2(t) >-b tit2<t<t2+T2 

0 < o' < Y2(t) <a       tft>t2+T2 



It is then easy to see that the trajectory Y2 must reach its minimum at time t = t2+r2 

and that this minimum value is bounded below by h — ar2 > h — bd > u. After time 
h + T"2> Y2 is strictly increasing so that there must be some time £3 > t2 such that 
*2(*3) = 9- It is easy to see that d < ^ < t3 - t2 < 3-h+bd, Since t3 - t2 > d it 
follows that the state the pump will be son at time £3. At time £3, Control issues a 
order that the pump be turned off and switches to state soff. Thus z2 = (poff, £3). 
It then easily follows that the values of the trajectory Y2 between times t = t2 and 
t = t% takes on its minimum value at time t2 + r2 and its maximum value at time £3 
where I^fe) = 9- Thus the values of Y2(t) lie between h — bd and g and hence meet 
our performance specifications. 

Thus the behavior of the system between the position ending in z\ and the 
position ending in zz meets the performance specification and the requirement that 
Control can follow the strategy determined by A(g, h). Note that at time t%, the 
water level is g and the pump is on and at time £3 the water and the pump is on. 
It is then straightforward to prove by induction that at time t2n+i the water level 
will be g and the pump will be on and that exactly the same analysis will apply to 
the behavior of the system between the position ending in z2n+i and the position 
ending in z2n+3- Hence it follows that the strategy for Control induced by A(g, h) is 
a winning strategy for Control as claimed. Ü 

It should be clear that in the statement of Theorem 11 we can replace the as- 
sumption that the pump is initially on and u < y(0) < g by the assumption that the 
pump is initially off and h < y(0) < g + a- d and the conclusion of the Proposition 
will continue to hold. 

4.1    The (g,h)— Automata for Discrete Sampling and Measurement 
Errors 

We now modify our continuous sensing game for the water level monitor in two ways. 
First we shall assume that Control, instead of continuously sensing the plant state, 
senses the plants state only at discrete times to <h <t2 < ..., where there is some 
positive A > 0 such that tk+i — tk > A for all k > 0. 

Second, we shall assume that Control is not able to exactly measure the plant 
state, but only that Control can measure the plant state within some error e. Our 
goal is to specify a continuous-input discrete-ouput automaton strategy for Control 
in such a game and the sequence of sampling times to < h < t2 < ... so that if 
Control measures the plants state at the times to < h < t2 < ... with an error of 
no more than e and follows the strategy induced by the continuous-input discrete- 
ouput automaton, then Control will ensure that the plant meets the performance 
specifications. 

In this case, we shall assume that to = 0 and that t* = kA for all k > 0 so 
that we are sampling every A seconds, where A > d and d is the maximum delay 
that can occur between the time at which Control issues a order to the pump to 
turn off or on and the time the pump actually achieves the state required by the 
order. Moreover, we shall continue to use the automaton A(g, h) for the strategy for 
Control. Thus the behavior of the system is the following: 
A. Suppose that the automaton is in state son and receives as input measurement 
m. Then, instantaneously, 



1. if m > g, then the automaton outputs poff and also shifts its state to soff, 
and 

2. if m < g, then the automaton remains in state pon, and outputs no action. 

B. Suppose that the automaton is in state soff and and receives input measurement 
m. Then, instantaneously, 

1. if m < h, then the automaton outputs pan and shifts to state son, and 
2. if y > h, then the automaton remains in state soff and outputs no action. 

Thus our problem is find A and the parameter g and h to ensure that the water 
level y(t) stays within the desired bounds, i.e. that for all t, u < y(t) < v. First of 
all, since we pick A > d, we will be guaranteed that the plant and automaton states 
correspond to each other at the end of each sampling interval. That is, if initially 
the plant state and the initial state of A{g, h) are such that if the initial state of 
A(g, h) is soff, then the pump is off and if initial state of A(g, h) is son, then the 
pump is on, then at some time before the end of each sampling interval the state of 
A(g, h) the pump will correspond to each other. 

It is then quite easy to derive the necessary conditions on the parameters g and 
h to guarantee that the control automaton A(g, h) provides a winning strategy for 
Control in our modified game. That is, all we do have to do is analyze the plant 
trajectories for given input measurement and states of A(g, h). We consider the 
following cases. 

Case 1 Suppose that the plants state is son and at time tk, Control receives 
a measurement mk < g. Now by assumption, if the actual water level at time tk is 
y(tk), then 

mk-e< y{tk) <mk + e. 

Assume also that the pump is on at time tk so that in this case the automaton 
remains in state son and issues the order no action and the pump remains on for 
the next A seconds. Then since the plant trajectory j/(.) between tk and tk+\ = tk+A 
must satisfy 

0 < a' < y(t) < a, 

it is easy to see that y(t) is a strictly increasing function in this interval and that 

y(tk+i) < y(tk) + aA < mk + aA + e < g + aA + e. 

Now if we find that the measurement received at time tk+i, mk+i, is still less than 
g, then of course the automaton will continue to be in state son and issue the order 
no action so that the pump will remain on, the plant trajectory j/(.) between tk+i 
and tk+2 will be strictly increasing, and 2/(^+2) < g + aA + e. We will continue on 
this way until we find the least I > k such that the measurement received at time ti 
will be greater than or equal to g. By our analysis, the actual plant state y(U) will 
bounded by g + aA + e. At that point, the automaton will issue the order for the 
pump to be turned off and switch to state soff. What happens to the trajectory y(t) 
between times ti and tj+i = ti + A? It is easy to see that our analysis of Theorem 11 
now applies. That is, there will be some rj < d < A such that the trajectory satisfies 

0<a'<y{t)<a       ifti<t<ti + Ti 
0 > -b' > y(t) >-b iiti + n<t< tt+1. 



It is then easy to see that the trajectory y(t) in the interval [*/, i/+i] must reach 
its maximum at time t = U + TI and that this maximum value is bounded by 
y(ti) + a,T\ < y(ti) + ad < g + a A + e + ad. Then after time ti + TI, y(t) is strictly 
decreasing. It is now easy to see that if we pick g so that 

g + ad + aA + e <v, 

then we will ensure that following the A(g, h) strategy will ensure that the water 
level never becomes greater than v. There is also a lower bound which is imposed on 
g which comes from the fact that the minimum value of y(t) in the interval [i;,t/+i] 
must be greater than or equal to u. Since we are assuming that mj > g, we know 
that y(ti) > g - e. If we assume that there is no delay in turning the pump off, 
then y(t) could be strictly decreasing in the interval. It is then easy to see that in 
such a situation, J/(*J+I) could be as small as g - e — bA. Moreover it could be that 
g — e — bA — e <h so that mj+i < h. In that situation, the pump will be off and 
our controller would tell the pump to turn on. However there could be a maximum 
delay of time d before the pump turns on and the the water level once again starts 
to increase. Thus there could be a further drop of -bd in the water level during this 
delay so that the water level could become as small as g — e — bA — bd. Thus we 
must also assume that g — bd — bA — e > u or equivalently that u — bd + bA + e < g. 
In case 2, we will deal with the case when mj+i > h. 

Case 2. Suppose that the plants state is soff and at time £*, Control receives 
a measurement m* > h. Again the actual water level y{tk) satisfies 

mk-e< y(tk) <mk+e. 

Assume also that the pump is off at time tk so that in this case the automaton 
remains in state soff and issues the order no action and the pump remains off for 
the next A seconds. Then since the plant trajectory y(.) between tk and tk+i = tk+A 
must satisfy 

0 > -b' > y(t) > -b, 

it is easy to see that y(t) is a strictly decreasing function in this interval and that 

V(tk+i) > y(tk) -bA>mk-bA-e>h-bA-e. 

Now if we find that the measurement received at time tk+i, mk+i, is still greater 
than h, then of course the automaton will continue to be in state soff and issue the 
order no action so that the pump will remain off, the plant trajectory y(.) between 
tk+i and tfc+2 will be strictly decreasing, and y(tk+2) >h — bA — e. We will continue 
on this way until we find the least I > k such that the measurement received at time 
U will be less than or equal to h. By our analysis, the actual plant state y(ti) will 
bounded below by h — bA — e. At that point, the automaton will issue the order 
for the pump to be turned on and switch to state son. Again use our analysis of 
Theorem 11 to analyze what happens to the trajectory y(t) between times ti and 
ti+i = ti + A. That is, there will be some T/ < d < A such that the trajectory 
satisfies 

0 > -b' > y(t) >-b ifti<t<ti+Ti 
0 < a' < y(t) <a       if ti + n < t < ij+i. 



It is then easy to see that the trajectory y(t) in the interval [t/,ij+1] must reach 
its minimum at time t = tj + 77 and that this minimum value is bounded below by 
y(ti) — bri > y(ti) -bd > h - bA - e — bd. Then after time ti + TJ, y(t) is strictly 
increasing. It is now easy to see that if we pick h so that 

h — bd — bA — e > u, 

then we will ensure that following the A(g, h) strategy will ensure that the water 
level never becomes less than u. There is also upper bound which is imposed on h 
which comes from the fact that the maximum value of y(t) in the interval [ij,tj+i] 
must be less than or equal to v. Since we are assuming that mi < h, we know that 
y(ti) < h + e. If we assume that there is no delay in turning the pump on, then 
y(t) could be strictly increasing in the interval. It is then easy to see that in such a 
situation, j/(tj+i) could be as large as h+e+baA. Note that the case when mj+i < g 
was handled in Case 1. However it could be that h+e+aA+e > g so that mj+i > g. 
In that situation, the pump will be on and our controller would tell the pump to turn 
off. However there could be a maximum delay of time d before the pump turns off 
and the the water level once again starts to decrease. Thus there could be a further 
rise of ad in the water level during this delay so that the water level could become 
as large as h + e + a A + ad. Thus we must also assume that h + ad + a A + e < v or 
equivalently that h <v — ad — aA — e. 

Below is the proposition asserting the conditions for correctness of the A(g, h) 
control automaton. 

Theorem 12. Suppose in the discrete sampling game for the water level monitor, we 
have a maximum delay of d for switching plant states, we are given a finite sampling 
time A > d > 0 and a measurement error bound e > 0. Choose the numbers h < g 
so that 

u + bd+bA + e < g,h <v — ad — aA — e. 

Suppose that the initial water level is between h + e and v — a • d and the pump 
is on or the initial water level is between u + b- d and g — e and the pump is off. 
Suppose that initially the pump and the control automaton are both in the "on" state 
or both in the "off" state. With the A(g,h)-controller introduced above, the water 
level satisfies the performance specification that u < y(t) <v at all times t>0. 

Proof By using the analysis of Case 1 and Case 2 above, one can easily prove by 
induction k that if Control follows the A(g, h) strategy in our modified game, then 
in each interval [**,<*+!], the trajectory of the plant y(t) will always satisfy that 
u < J/(*) < v- We leave the details to the reader. D 

We note that the inequalities on g and h in Theorem 12 automatically impose 
the following upper bound on the size of the sampling interval A: 

.  _ v — u + d(a + b) — 2e 
A <  ^-; . 

a + b 



4.2    Topological Finite Automata from Open Covers 

In appendix II of [24], there is a general method which, given a hybrid system whose 
performance specification is autonomous, extracts a finite automaton which which 
can be used to guarantee that the hybrid system will meet its performance speci- 
fications as well as to extract small topologies which guarantee the stability of the 
system. Our goal in this section is to follow appendix II of [24] and construct a finite 
open cover yielding a finite control automaton and small topologies for our water 
level monitor example which guarantee that the water level always stay within speci- 
fied bounds. Here, when we say that the performance specification is autonomous, we 
mean the following. We assume that the plant is modeled by a differential equation 

y = f(y,u,d) 

where u is a control parameter and d is a disturbance parameter. Then in each 
interval of time A = [to>*i] and any given plant state y that lies within a certain set 
of acceptable values, we want to find a control law u{.) such that if we use the control 
law u(t) to determine the plant trajectory, then for any acceptable disturbance d{t), 
our plant trajectory should meet the required performance specification. That is, 
any function y(t) such that y(to) = y and y(t) = f(y(t),u(t), d(t)) for all t € A must 
meet our performance specification. We assume that our choice of suitable control 
functions u(t) for any interval A depends only on the plant state x and the internal 
state of the controller but not on the time t which is the start of the interval. 
In this situation, the problem of meeting performance specification is equivalent 
to determining a set Q of "acceptable "pairs (x,u(t)) of plants states and control 
functions. That is, each pair represents a plant trajectory which begins at the plant 
state of the pair and is guided by the control law of the pair which satisfies the our 
performance specifications over the sampling interval A. Note that in this situation, 
the control law u(t) is a function of time over the sampling interval that takes values 
in the range of values of the control parameter. 

For example, the range of the control parameter for the water pump-tank sys- 
tem is the set of orders for the pump or equivalently the set of states of the pump 
{1 = 'pon',0 = 'poff'} and every control law is a constant function over the sam- 
pling interval with the range being the pump states. In what follows, we adapt the 
definition of the set of pairs Q to reflect the presence of possible delays in switching 
the pump states. Thus for the water tank and pump example, we let Q consist of 
the pairs such that for any admissible delay in switching to a new pump state as 
directed by Control in the sampling interval A, the the water level which correspond 
to the plant trajectory stays within our required bounds. 

In the general setting for autonomous performance specification, the first stage 
of finding a control automaton in the small topologies satisfying the specification is 
to find a control function. 

Definition 13. A feedback control function if is a map that assigns to each 
pair of a plant state x reached at the end of a sampling interval A and the current 
control law u used in A, a control law u' such that the corresponding plant trajectory 
over the next sampling interval A' satisfies the performance specification over that 
interval. 



A useful model to keep in mind is to think of the control u(t) as being deter- 
mined by a physical controller. Thus the automaton communicates with the physical 
controller by setting the state of the physical controller su which has the effect of 
imposing the control u(t) for the next sampling interval. In such a situation, we 
can identify the control laws with the states of the physical controller. For example, 
in the case of the water pump and tank example where the control functions are 
piecewise constant, we may represent u its value which is either pon or poff. For 
the rest of this section, we shall use this model so that instead of talking about the 
current control law of the sampling interval, we will talk about the current state of 
the physical controller, etc. 

Definition 14. The automaton A(H) associated with a control function H is de- 
fined as follows. 

1. Its set of states is the set of states of the physical controller K. (In the more 
general language, K would be the set of possible control laws which occur in 
pairs in Q.) 

2. Its input alphabet is the set of plant states U = PS. 
3. Its output function H(u, k) is the feedback control function. 
4. Its transition table M(u, k) models the switching of control laws output by the 

controller, i.e. M(u, k) = H(u, k) for all u G U and k G K. 

Next we want to isolate some properties of the automaton A(H) or equivalently 
the feedback control function H which will guarantee that we can perpetually apply 
our control strategy. 

Definition 15. Say that the automaton A(H) associated with a feedback control 
function H is correct with respect a performance specification and a region 
B C PS x K if the following holds. For any pair a = (y, k) G B and for any 
admissible disturbance d(t), any trajectory beginning from y and guided by the 
control corresponding to k during the delay for switching to new state of the physical 
controller H(y, k) and by the control H(y, k) after the delay satisfies the performance 
specifications and ends up in B at the end of the sampling interval. Here "ends up 
in B" means that if j/i is plant state corresponding the trajectory at the end of the 
sampling interval, then (yi,H(y,k)) G B. 

Definition 16. Suppose that there is a region B in the domain of the feedback con- 
trol function H such that for any pair (y, k) G B and for any admissible disturbance 
d(t), any trajectory beginning from y and guided by the control corresponding to k 
during the delay for switching to new state of the physical controller H(y, k) and 
by the control control H(y, k) after the delay satisfies the performance specifications 
and ends up in B at the end of the sampling interval. Then we call such a control 
function a guiding feedback control function relative to B. 

The definitions above can easily be extended to apply to the case when the control 
function is set-valued as introduced in appendix II of [24]. The idea of a set-valued 
feedback control function is that one computes a set of controls or in our case a set 
of physical controller states from a pair consisting of a plant state and a physical 



controller state and then selects from that set one control or physical controller state 
which will be used to determine the plant trajectory in the next sampling interval 
A The set of control functions or physical controller states that we compute should 
be such that for every control function or physical controller state that could have 
been chosen from the set and every admissible disturbance, the corresponding plant 
trajectory always satisfies the performance specifications. 

Set-valued feedback control functions arise naturally in our context. Consider a 
map H from the pairs (m, k) ((measurement, physical controller state)) into the set of 
states of the physical controller. If we take the measurements as inputs to the control 
automaton and identify the map H with the control automaton output function, 
we of course have an ordinary function as opposed to a set-valued one. However 
suppose that we assume that a measurement can be any value that approximates a 
plant state within some error bound. That is, we view a measurement as a set-valued 
function over plant states from which an nondeterministic choice of an element from 
a set is made. For example, suppose that the map above is H(m, k), where m is a 
measurement, and fc is a physical controller state. Then the corresponding set-valued 
feedback control function is G(y,k) = {H(m, k) : \m — y\ < e}. Here e > 0 is the 
measurement error bound. 

In appendix II [24], the graph of G is assumed closed. But our G is not closed. 
So we take the closure of the graph of G and consider a corresponding set-valued 
function G' whose graph is that closure. So our control function will be G'. The 
topologies that are used in the construction of G' are the natural Hausdorff topologies 
on the plant state space and on the space of states of the physical controller following 
[24]. The fact that the topological spaces are Hausdorff means that if the state space 
K of the physical controller is finite, then the K must have the discrete topology 
since the only Huassdorff topology on a finite set is the discrete topology. 

It is also important for applying the methodology of appendix II that the domain 
of the feedback control function be a subset of the set Q. This is true of the graph 
of G but not necessarily for the closure of G because the domain of the closure of G 
may include boundary points of Q which are not in Q. In the case we consider, the 
closure of G will in fact lie entirely in Q. 

Now let us go back to our water level monitor example. Let K = {pon,poff} be 
the range of control values or equivalently the states of the pump. Let the variable 
k range over the set K. Here, the map H(m, k) is defined by 

^^ '  ' ~ \ pan   otherwise 

„,    ,,   .      (pan   if y<h 
H{P°ff^ = {poff otherwise 

A water level y is taken from the set [u,v], which carries the natural Euclidean 
topology. There is only one Hausdorff topology on the set K, the discrete topology. 

To construct the function G note that for each control automaton state the func- 
tion H is continuous except at one point in the range of y. The point of discontinuity 
for H is either g or h at respective automaton states on, off. It follows that if y 
is separated from, say g, by more than the error bound e, then the function has a 
singleton set as a value. One can see that at points g — e,g + e,h — e,h + e, the value 



of G is still a singleton. At points near to g, ft by less than e, the value of G is K 
since H has a different value to the right of g than to the left of g. Thus 

{{port}   if y <g-e 
K iig-e<y <g + e 
{poff} if y > g + e 

{{pon}   if y < ft — e 
K        if h-e<y<h + e 
{poff} if y > ft + e 

Now consider the closure G' of the graph of G. Here we use the same letter for the 
set-valued function and for its graph. Here is the resulting closure. 

{{pon}   ify<g-e 
K        ifg-e<y<g + e 
{poff} if y>g + e 

{{pon}   if y < ft — e 
K i£h-e<y<h + e 
{poff} if y > ft + e 

Note that the definition of the function G also makes sense for exact measurements 
(e = 0), but in that case the corresponding function G' is multi-valued only at the 
points of discontinuity (g,on), (h,off) of H. This nondeterminacy makes clear the 
arbitrary nature of the choice of a strict or non strict inequality in the definition of 
H. That is, we obtain four functions which are variants of H, differing from H only 
in having non-strict inequalities in the definition. All give rise to the same G'. 

We distinguish between three slightly different automata, Aut\, Auti, and Autz, 
which depend on our pair of parameters g and ft. For all three automaton, the 
set of states is {pon,poff}, the input alphabet is the set of water levels and the 
output alphabet the same as the set of states. Thus we need only define their output 
functions Hi(y, k) and their transition tables Mi(y, k). For the automaton Aut\{g, ft), 
the output function H\(y, k) and the transition table M\{y, k) are both equal to the 
function H(y,k) defined above. If we think of this automaton as a strategy for 
Control in the discrete sampling game with error measurements, then Auti gives 
essentially the same strategy as the automaton A{g,h) described in the previous 
section. The only difference between the two automaton is when in the state pon 
when y < g, Auti(g,h) outputs pon while A(g, ft) outputs no action. However we 
regard both of these instructions to a pump which is on to be the same, i.e. they both 
keep the pump on. Similarly when in the state poff when y > ft, Aut\ (g, h) outputs 
poff while A{g, ft) outputs no action. Again we regard both of these instructions 
to a pump which is off to be the same, i.e. they both keep the pump off. Thus 
by Proposition 12 Aut\ is a winning strategy for Control in the discrete sampling 
game with error measurements. Now as observed above, if we think about the action 
of the strategy as a function of plant states instead of on measurements where 
we assume that the absolute value of the difference between the measurement and 
the actual plant state is no more than e, then the transition table and the output 



function axe nondeterministic and are give by the function G defined above. Thus 
we define a second automaton Aut^g, h) whose transition table and output function 
are given by G, i.e. for all (y, k), M2(y, k) = #2(1/, k) = G(y, k). Of course Aui2 is a 
nondeterministic automaton and the output function is set valued. We shall assume 
that the automaton operates as follows. If Auti is in state s and is reading input y 
and goes to state s' at its next step so that s' € M2(s,y), then the output of the 
automaton in that circumstance is also s'. That is, our definitions ensure that for the 
pair (s,y), the possible new states and the possible outputs come from the same set 
since M2(s,y) = #2(3,2/). We are thus making the additional assumption that such 
choices are coordinated for any (s, y). In this way, we can use Auti as a strategy for 
Control since our assumption will ensure that the internal state of the automaton 
Aut\ and the state of pump are always coordinated at the end of sampling intervals 
if they start out coordinated. If we think of Auti as a strategy for Control in the 
discrete sampling game without errors in measurements, i.e. in the discrete sampling 
game where the error bound e = 0, then this strategy for Control will produce exactly 
the same set of runs with respect to plant states as the strategy Aut\ produces in the 
discrete sampling game with error measurements. Hence Aufa is a winning strategy 
for control in the discrete sampling games without error measurements. Finally we 
consider yet another nondeterministic automaton Aut$ whose transition table and 
output function axe given by G' instead of G. Again we assume that Aut$ operates 
so that if Autz is in state s and is reading input y and goes to state s' £ M3(s,y) at 
its next step, then the output of the automaton in that circumstance is also s'. 
Remark 

The differences between the control strategy Aut\ in our discrete sampling game 
with errors in measurements bounded by e and the control strategy Auti in our dis- 
crete sampling game without error measurements can be explained in terms whether 
we consider the analog to digital converter as part of the plant or whether we want to 
consider the analog to digital converter as part of the digital controller. That is, if we 
consider the analog to digital converter as part of the plant, then it is natural to as- 
sume that the digital controller receives only plant measurements and this situation 
is most naturally modeled as a discrete sampling game with errors in measurements 
where the control automaton is deterministic. However, if we consider the analog 
to digital converter as part of the digital controller, then the most natural way to 
model this situation is that we have a discrete sampling game without errors in mea- 
surements and that the control automaton behaves in a nondeterministic manner as 
described by Aut-z. Thus our choice of using Auti in a discrete sampling game with 
errors in measurements or of using Aut2 in a discrete sampling game without errors 
in measurements comes down to the choice of where in Figure 1 we wish to place 
the analog to digital converter, i.e on the digital side or on the analog side. 

Our next proposition states that Aut^ is also a winning strategy for Control in 
the discrete sampling games without error measurements. 

Theorem 17. Suppose in the discrete sampling game without errors in measure- 
ments for the water level monitor, we use finite sampling intervals of size A and 
that the maximum delay d for switching to new plant state is such that A > d > 0. 
In addition assume e > 0 and that g and h satisfy 

1. g <v — a-d — a-A — e; 



2. g — e>h + e; 
3. h>u + b-d + b-A + e. 

Suppose that the initial water level is between h+e and v — a-d and the pump is 
on, or the initial water level is between u+b-d and g—e and the pump is off. Suppose 
that initially the pump and any of the two control automata, Aut2 or Aut3, are both 
in the on state or both in the off state. Then Aut2 and Aut^ are winning strategies 
for Control in such discrete sampling games without errors in measurements for the 
water level monitor. 

Proof The proof of Theorem 12 that Autl is a winning strategy for Control in 
discrete sampling games with errors in measurement bounded by e can be is easily 
adapted to prove that that either Aut2 or Aut3 is a winning strategy for Control 
in the discrete sampling games without errors in measurement. The proof is by 
induction on the length of positions as before. We leave the details to the reader, ü 

The content of Theorem 17 can be restated as the following property of the 
feedback control function G'. Suppose the water level y is between h + e and v-a-d 
and the pump is on or y is between u + b-d and g — e and the pump is off. Suppose 
that the next control law is chosen from the set G'(y,k), where k is the state of 
the pump as specified above at the beginning of the sampling interval A. Then the 
water level lies in the interval [u,v] over the next sampling interval. Thus G' can 
indeed be used as a feedback control function for the water level and pump states 
in the region 

A = [h + e,v -a-d]x {on} U [u + b■ d,g - e] x {off}. 

Moreover, the water level and the state of the pump at the end of the sampling 
interval satisfy the same assumptions that are satisfied by this data at the beginning 
of the sampling interval. That is, the trajectories that have begun in A will end in 
A at the end of a sampling interval if they are guided by a control law determined 
by the set-valued control function. According to our earlier definition, the feedback 
control function G' restricted to A is a guiding feedback control function. 
Constructing Open Covers 

We now consider an open cover of the graph of G' restricted to the region A. 
Our goal is to construct a finite automaton with small topologies approximating 
G'. We presented A above as a disjoint union of two open and closed (clopen) sets. 
Correspondingly, the graph of G' is a disjoint union of clopen sets. It is sufficient 
to cover each of the clopen sets independently. Choose e > 0 so small that the sets 
below are subsets of the graph of G'. To visualize the regions below more clearly, 
recall that we have the following the inequalities: 

h — e < g — e < g + e <v — a- d and 

u + b-d <h — e <h + e < g — e. 

Here is the open cover for the first clopen set: 

Vi = [h + e, g - e + e) x {on} x {on}, 
V2 = {9 - e - e,g + e + e) x {on} x K, 
V3(g + e-e,v-a-d]x {on} x {off}. 



Similarly here is an open cover for the second clopen set: 

V4 = [u + b • d, h - e + e) x {off} x {on}, 
V5 = (h - e - e, h + e + e) x {off} x if, 
V6 = (h + e - e, g + e] x {off} x {off}. 

Let J/i, f/2, U3, U4, U5, Uß be the leftmost components of V\, V2, V3, V4, V5, V5 re- 
spectively. The input alphabet of the small topologies automaton will consist of the 
two disjoint lists. Namely the join irreducibles of the lattice under inclusion gener- 
ated by U\, U2 and U3 which consist of 

Ui,U2,U3,Uinu3,U2nu3 

and the set of join irreducibles of the lattice under inclusion generated by U4, C/5 and 
Ue which consists of 

UA,Ut,Ufi,UAnUs,u6nUt. 

In the notation of [24], the sets Vu i = 1,..., 6, correspond to an open cover of 
the graph of G' restricted to A. The sets of the cover are of the form Vi = A{ x Bi, 
with 1 < i < 6 where 

Ai = U{x {on} 1 < i < 3, 
Bi = {cm}, B2 =K,B3 = {off}; and 
Ai = Utx {off}, 3 < i < 6, 
B4 = {on}, B5 = K, B6 = {off}. 
The finite automaton in the small topologies described in [24] assigns to each 

join-irreducible in the lattice generated by the open sets Ai, a set of control laws. 
That is, we attach to every non-empty join irreducible A\ in the lattice generated 
by the A*'s, an open set 

0(A'i) = UzeriBz, 

where rt = {z \ A'{ C Az}. 
In our case it is easy to check that we obtain the following assignments of 0{A'i) 

for the join-irreducibles A'^. 

1. the sets U{ x {on}, 1 < i < 3 are mapped respectively to {on},K, {off}. 
2. the sets Ui x {off}, 3 < i < 6 are mapped respectively to {on},K,{off}. 
3. each of the following four join irreducibles, (U\ n U2) x {on}), (U2 n U3) x on}, 

(U4 n U5) x {off}, (U5 n U6) x {off}, is mapped to K. 

Let H(u, k) be any set-valued function which is consistent with the above assign- 
ments where u ranges over the set U of join irreducibles in the lattices generated by 
U\,U2,Uz and by U4,Us,U6. Formally, the finite automaton in the small topologies 
corresponding to the above data is the following: 

1. The set of states S = K. 
2. The input alphabet is the set U. 
3. The output alphabet V = K. 
4. The nondeterministic output function is based on the set-valued function H 

described in the assignments above. 
5. The transition table M : U x K -¥ K is defined by M(u, k) = H(u, k). 



The automaton can be used for control as follows. Let y be a water level and k 
be the automaton current state. 

1. The analog to digital converter transforms y   into the least join-irreducible u 
that contains y. 

2. The automaton maps u  nondeterministically into a pump state k' £ H(u,k), 
and outputs k' to the plant. 

This automaton is parameterized by the e entering the definitions of U[. Are there 
values of e which guarantee that water level trajectories arising from the automaton 
satisfy the control requirements? While considering this question we may ask whether 
the automaton output function is related to a suitable feedback control function. 
Should it happen to be a guiding feedback control function for some region of Q, 
then the control automaton would satisfy the control requirements if it began its 
operation in that region. 

Consider the following "feedback control function": f{y,k) — H(u,k), where u 
is the least join-irreducible that contains y. It is then easy to see that: 

When k = on: 

{K   if y € (g-e-e,g + e + e) 
on   ifye[h-e,g-e-e] 
off ifye[g + e + e,v-a-d] 

When k = off, 

(K   ifye(h-e-e,h + e + e) 
on   if y € [u + b ■ d, h - e - e] 
o//ify6[/i + e + e,g + e] 

We have three objects now: the finite automaton in the small topologies, the 
corresponding function /, and the control automaton associated with /. It is easy 
to see that each of the three objects have the same set of water level trajectories 
over the region A generated by the object. It follows that if / is a guiding feedback 
control function over A, then the finite automaton with small topologies is correct. 

We can conclude that / is a guiding feedback control function from the following 
general fact and Theorem 17. 

Proposition 18. Suppose A C PS x K and f,F are two set-valued functions over 
A with values subsets of K. Suppose that the graph of f is a subset of the graph of 
F and F is a guiding feedback control function. Then so is f. 

Proof It is clear that all the plant trajectories generated by / constitute a 
subset of those generated by F. The conclusion desired is immediate. □ 

Consider F, which is determined by g, h and e' = e+e. Assume that the premises 
of Theorem 17 are satisfied by this data for some eo > 0. It follows from Theorem 
17 that F is a guiding control function. It follows from the proposition above that 
so is / for any e < eo- 

Remark The control automaton Autl described above is a formal represen- 
tation of the controller from [1]. That paper does not mention using a sampling 



interval A > 0. We can interpret this as meaning that water level is measured and 
tested continuously. Continuous measurement and testing in the presence of pump 
delay can cause the above control automaton and the controller from [1] to produce 
an infinite number of outputs in a finite interval of time, a physical impossibility. 
Consider a time t at which the automaton outputs a request to change the pump 
state. Suppose that just prior to that time the pump was "on" and the state of the 
automaton was son. Suppose that the pump delay is d > 0. Since the water level 
continues to increase during the delay, and the automaton continuously samples the 
input, the automaton senses the condition y > g at all times in the interval (t, t + d). 
Thus the automaton will produce an essential output at each time in that inter- 
val. Our assumption that we sample (measure, sense) after each interval of length 
A > d > 0 eliminates this source of unrealizable behavior. Sampling at times sep- 
arated by a positive bound A > 0 cannot be dispensed in modeling a plant with 
delays. 

Later papers will investigate open covers and the corresponding finite automata 
with small topologies for a variety of control problems. 
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